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Introduction: Personalized Medicine

@ A major challenge in the domain of medical science and healthcare is
to evaluate the effect of an intervention or exposure (referred as
“treatment” ) on the outcome.

o Traditional treatment guidelines are based on the average treatment
effect (ATE) on the entire population.

Zhikuan Quan (UCD) ifyi in Bi isii June 13, 2023



Introduction: Personalized Medicine
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Figure: Transit from ATE to ITE
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Introduction: Personalized Medicine

Individualized Treatment Effect (ITE)
@ Goal: Novel statistical methods to estimate ITE
@ Identify the subgroups that have heterogeneous treatment effects
@ Predict the individualized treatment effects for new subjects
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Introduction: Motivating Example

e Motivating Example: Maternal Immune Activation (MIA) Study
o MIA during pregnancy alters postnatal brain growth and cognitive
development in nonhuman primate offspring. [Vlasova et al., 2021]
e High maternal status for vitamin D, iron, zinc, or choline could
promote resilience to the effects of MIA. [Meyer, 2019]
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Introduction: Motivating Example

e Motivating Example: Maternal Immune Activation (MIA) Study
o MIA during pregnancy alters postnatal brain growth and cognitive
development in nonhuman primate offspring. [Vlasova et al., 2021]
e High maternal status for vitamin D, iron, zinc, or choline could
promote resilience to the effects of MIA. [Meyer, 2019]

@ MIA causes aberrant outcomes in only a subset of pregnancies.
— How to predict whether a pregnancy is susceptible to MIA?
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Introduction: Motivating Example

e Motivating Example: Maternal Immune Activation (MIA) Study
o MIA during pregnancy alters postnatal brain growth and cognitive
development in nonhuman primate offspring. [Vlasova et al., 2021]
e High maternal status for vitamin D, iron, zinc, or choline could
promote resilience to the effects of MIA. [Meyer, 2019]

@ MIA causes aberrant outcomes in only a subset of pregnancies.
— How to predict whether a pregnancy is susceptible to MIA?

@ Goal: Estimate ITE of MIA (ie, individualized MIA effect)

o Identify the subgroups that are resilient or susceptible to MIA using
baseline information during pregnancy

o Facilitate the intervention for high-risk mothers during pregnancy and
early intervention for high-risk offspring.
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Introduction: Literature Review

Statistical approaches to estimate ITE:
@ Naive Full Regression Model
o Need strong assumptions in model specification.
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Introduction: Literature Review

Statistical approaches to estimate ITE:
@ Naive Full Regression Model
o Need strong assumptions in model specification.
@ Robust methods bypassing the modeling of main effects: General
Framework of Subgroup ldentification: [Chen et al., 2017]

o A-Learning: Model the treatment-covariate interaction with
pre-estimated propensity score [Murphy et al., 2003]
o Weighting Approaches: Inverse probability weighted estimator
o Outcome Weighted Learning [Zhao et al., 2012]
o D-Learning [Tian et al., 2014]
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Introduction: Literature Review

Statistical approaches to estimate ITE:
@ Naive Full Regression Model
o Need strong assumptions in model specification.
@ Robust methods bypassing the modeling of main effects: General
Framework of Subgroup ldentification: [Chen et al., 2017]
o A-Learning: Model the treatment-covariate interaction with
pre-estimated propensity score [Murphy et al., 2003]
o Weighting Approaches: Inverse probability weighted estimator
o Outcome Weighted Learning [Zhao et al., 2012]
o D-Learning [Tian et al., 2014]
@ Recent extensions to the robust methods:
o Residual Weighted Learning: Use residual as outcome to reduce the
variance of the estimator [Liu et al., 2018]
o Doubly Robust Direct Learning: Double robustness with possibly

mis-specified main effect and propensity score models [Meng et al.,
2022]
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Introduction: Literature Review

» However, most of current robust statistical approaches are only
for single-outcome data.

o Cannot handle clustered/longitudinal outcomes
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Introduction: New Challenge

New challenges in complicated clustered/longitudinal data:

@ The correlation of outcomes is common in health studies.
o Longitudinal data: e.g. repeated measures of cytokines level over time
o Clustered data: e.g. multiple offspring within the same dam
o Multi-leveled data: e.g. repeated outcomes over time for each

offspring, and multiple offspring from same dam

@ The increasing availability and complexity of observational data
o High-dimensional Data: e.g. EHR, genetics information
o Non-linear relationships
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on: Recent Development for Correlated Data

Linear Two-stage
Mixed Method
Model [Choetal., 2017]
Generalized Huling’s
Weighting Method
Method  [Huling etal,, 2019)
Tree-based Interaction
Algorithm Tree
[Wei et al., 2020]
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Introduction: Our Contribution

We propose a novel statistical framework for clustered/longitudinal data,
with following advantages:

@ Account for the correlation in data

@ Directly estimate the ITE in both randomized and observational data

Identify subgroups with heterogeneous intervention effects

Doubly robust property with respect to mis-specification of main
effect or propensity score

Allow regularization approach to handle high-dimensional data

Allow flexible modeling of ITE using flexible function space or
machine learning techniques
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Methodology
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Notations and Assumptions

Data: {(Y;, Ti,X;):i=1,...,n,j=1,.. k}
e Outcome: Y; = (Y1, ..., Yi,) for i-th subject
o Time: t; = (t1, ..., tx,)’
o Yi(tj) := Yj is the j-th observation for subject i at time t;.
@ Treatment: T; € T = {1,—1} is assigned at baseline
o Baseline Covariates: X; := (X1, ...,X,-,p)’ c X CRP

Subject-Level ' A . L ‘

j Y, Y, Y,
Time-level ‘iYn\ o Vi Yy ) Y Yy | o Yok,
Time: ty L, ty Ly, ty ti,

Figure: Longitudinal Data
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Notations and Assumptions

Dam-Level ‘Y1 ‘ Yi | Yn

Offspring-Level (Y;; Ylkl‘ 'Yil e (Y, ) /Ynl o Yok,

Figure: Clustered Data in MIA Study
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Notations and Assumptions

o Potential Outcome: \’I.(T’), T; e {1,-1}
o Causal Inference Framework
o Consistency Assumption:

Yi= T =13y + ({1, = 13y
e Unconfoundedness Assumption:
(Y, Y 0) L Tl
o Positivity Assumption:

7(1(X,') = P(T, = 1|X,) € (0, 1) and 7T_1(X,') =1- 7T1(x,')
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Notations and Assumptions

We can decompose the continuous outcome into:

Y, = m(X,-, t,') + T,'(S(X,', t,')/2 + €; (1)
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Notations and Assumptions

We can decompose the continuous outcome into:
Yi = m(Xi, t;) + T;0(Xi, ti)/2 + €; (1)
@ Main Effect is characterized by
1 -1
m(x;): =E [(¥ + Y )X /2
={E(Y;|Ti=1,X;) +E(Y;|Ti = -1, X;)}/2
where m(X,-, t,') = (m(X,-, tl), ey m(X,-, tk,-))/
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Notations and Assumptions

We can decompose the continuous outcome into:

Y, = m(X,-, t,') + T,'(S(X,', t,')/2 + €; (1)
@ Main Effect is characterized by

m(X;): =E (Y + ¥/ x| /2
={E(Yi|Ti=1,X;) +E(Y;|Ti = -1, X;)}/2
where m(xi’ ti) = (m(xi7 tl)u sy m(xi7 tki))/
o The individualized treatment effect (ITE) is represented by:
8(Xi, ) : =E [(¥) - ¥ V)|x;]

where 6(X,-, t,') = ((5(Xi, t1)7 ceey 5(xia tki))l
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Notations and Assumptions

We can decompose the continuous outcome into:

Y, = m(X,-, t,') + T,'(S(X,', t,')/2 + €; (1)
@ Main Effect is characterized by

m(X;): =E[(v® + ¥ )x] 2
={E(Yi|Ti = 1,X;) + E(Yi| Ti = -1, X;)}/2

where m(X,-, t,') = (m(X,-, tl), ey m(X,-, tk,-))/
o The individualized treatment effect (ITE) is represented by:

6(X;, &) : =E [(¥{) - ¥/ ) x;]
where 6(X,-, t,') = ((5(Xi, t1)7 ceey (5(X,', tki))l

e Random Error €; = (€j1, ..., €ik;) with E(€;) = 0y, and invertible Var(e;) = V;
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Notations and Assumptions

We can decompose the continuous outcome into:

Y, = m(X,-, t,') + T,'(S(X,', t,')/2 + €; (1)
@ Main Effect is characterized by

={E(Yi|Ti = 1, X;) + E(Yi| Ti = -1, X;)}/2
where m(X;, t;) = (m(X;, t1), ..., m(X;, t.))’
o The individualized treatment effect (ITE) is represented by:
6(X;, &) : =E [(¥{) - ¥/ ) x;]
where 6(X,-, t,') = ((5(Xi, t1)7 ceey 5(xia tki))l
® Random Error €; = (€j1, ..., €ik;)’ with E(e;) = Ok, and invertible Var(e;) = V;

€) For clustered data, the time t; can be excluded. (reduced model)
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Review: A General Framework for Single Outcome

o For single outcome model with {(Y;, T;, X;) : i =1, ..., n}:

6 := argmin 1 M(Y;, Tif(Xi)/2)
Fe{x—R} N = m1,(X;)

where M(.,.) is pre-specified loss function that characterizes the
goodness of fit. [Chen et al., 2017]
e e.g. M(a,b) = (a— b)? for continuous outcome.

24/ 51
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New Method for Correlated Data

@ Our new method uses loss function:
M(a, b) = (a— b)V~1(a—b)
@ The ITE § can be estimated by:

N 1 1
6 := argmin — Y; — T;f(X;, t;)/2 V_
B 2y Y T (X 802

{Y,' — T,'f(X,', t,')/2}

o For longitudinal data: f(X,-, t,') = (f(X,-, tl), ey f(X,-, tk,.))/.
o For clustered data: f(X;) = (f(X;), ..., f(X;))
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New Method for Correlated Data

n

. 1
§ := argmin Y; — Tif (X, £7)/2) V!
rfgen;nnzm(x){ (X, £:)/2)

{Yi — Tif (X, t;)/2}

@ In longitudinal data, one example is to apply AR(1) or other
correlation structure for V;;

@ In clustered data, one example is to use exchangeable correlation
structure for V;;

€ Our method can be also applied to multi-level data.

June 13, 2023
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Consistency

Theorem 1: Consistency

Under the assumptions in causal inference framework with model (1), for
the working model of propensity score @1(x), if #1(x) = m1(x) for x € X
almost surely, we have

o €ar min]E[
o A (X

iy (Y= T, 02 V(Y - Tf(x,,t)/z}]

@ Even modeling of main effects is by-passed, the § is consistent if the
propensity score is consistent.

o There are often many covariates in main effects, but far fewer
intervention-moderators that alter intervention effects

o We model intervention-moderators only — robust to model
mis-specification of main effect
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Efficiency Augmentation

° és in Residual Weighted Learning for single outcome, the variance of
0 can be reduced when the outcome is replaced by augmented
outcome Y — a(X). [Liu et al., 2018]

o Following this idea in our method with augmented outcome

Y; — a(X;, t;), we can prove that the optimal augmentation (with
smallest variance) is:

a(X,-, t,-) = m(X,-, t,') + {1 - 27T1(X,-)}(S(X,', t,')
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Efficiency Augmentation

@ As in Residual Weighted Learning for single outcome, the variance of
0 can be reduced when the outcome is replaced by augmented
outcome Y — a(X). [Liu et al., 2018]

o Following this idea in our method with augmented outcome

Y; — a(X;, t;), we can prove that the optimal augmentation (with
smallest variance) is:

a(X,-, t,-) = m(X,-, t,') + {1 - 27T1(X,-)}(S(X,', t,')

@ In randomized trial with 71(X;) = 0.5, the optimal efficiency
augmentation is

a(X,-, t,') = m(X,-, t,')

Zhikuan Quan (UCD)

June 13, 2023



Efficiency Augmentation

° és in Residual Weighted Learning for single outcome, the variance of
0 can be reduced when the outcome is replaced by augmented
outcome Y — a(X). [Liu et al., 2018]

o Following this idea in our method with augmented outcome

Y; — a(X;, t;), we can prove that the optimal augmentation (with
smallest variance) is:

a(X,-, t,-) = m(X,-, t,') + {1 - 27T1(X,-)}(S(X,', t,')

@ In observational study with sparse high-dimensional data:

o We often expect the main effect is much larger than the interaction
part (most covariates contributes to main effects m but not in §)

Thus, the optimal efficiency augmentation is approximated by

a(X;, tj) = m(X;, t;)
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Efficiency Augmentation

Main effect estimation for efficiency augmentation:

1 o 1
h = in= Y. —g(X:. t)VV Y. — o(X:. t;
m a;gg&m n < 7TT,-(Xi,ti){ i g( 1 l)} i { ] g( 1 l)}

@ It uses all the data units all at once to estimate the main effect.

@ It can be easily generalized to other regression methods or flexible
models using machine learning techniques.

o If the propensity score is known, the main effect estimator is
consistent if m € G.

o If the propensity score is unknown, one can estimated it by simple
logistic regression with all baseline covariates before intervention.

o After obtaining 1, we can plug it in outcome augmentation to
estimate §
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Augmented New Method for Correlated Data

e STEP 1: Estimate the propensity score model 7 1,(X;) and main
effect model m(X;, t;) for efficiency augmentation

o STEP 2: Estimate ITE model §(X;, t;) by minimizing the loss
function:

INC 1 iy s o0 TEX /] vt
n;ﬁri(x,-)[{y' (Xi, )} T,f(x.,t,)/z]v,

[{Yi — m(X;, t;)} — Tif (X, ti)/2]
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Double Robustness

Theorem 2: Double Robustness

Under the assumptions in causal inference framework with model (1), for
the working model of propensity score #1(x) and main effect m(x, t), if
either #1(x) = m1(x) or mi(x,t) = m(x,t) for x € X and all t almost

surely, we have

é € argminE

1 " .
B0 | (s (X ) = T (X 6)/21V,

{Yi — m(X;, t;) — T:f(X;, t;)/2}

@ For randomized study, the proposed method always leads to
consistent ITE even main effects is mis-specified

@ For observational study, the proposed method double the chances to
obtain consistent ITE
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Implementation

@ Directly optimize the function among all functional spaces is not
feasible — Need assumptions on the function space f € F

l 1 ; T . L / 1
n;,ﬁ_ri(xi) |:{Yl m(xla t,)} T,f(x,,t,)/2:| Vl

[{y,. — (X, )} — Tif (X, n-)/z}
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Implementation

o Linear case: fiin(X;, tj) = )~(,-’jﬁ where 8 = (Bo, BT, b1, ---, Bp)’ and
X;i = (1,t;, X;)', then the loss function Ljin(3) is

n

1
—ZWT(X) (0¥ — (X, 1)} — {(Ti X /2 8Y] Vi

(¥ — (i, )} — {(T:Xi/2) B}
where X,' = (X,'l, ooy X,'k,.)

@ The minimization can be implemented within linear mixed model or
GEE method by specifying the correlation structure V;.

o Non-Linear case: fuon(Xj, tj) = Bo + Brt; + > 0_; B(Xi q)Bq where
B(.) is the B-spline based function in the additive model
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Regularization in High-dimensional Data

o For high-dimensional data:
e The number of covariates is large.

o Often we expect only a small subset of the features is associated with
the subgroup identification (ie, intervention-moderators).

e We can add Lasso penalty [Tibshirani et al., 1996] in our loss
function, e.g.

Lin(B) = Lin(B) + Al|B| 11

where ||8]]1 = |B7|+ Y_F_; |Bi] and the tuning parameter A > 0.

o Different regularization method is also applicable in our framework,
but Lasso has better interpretation in application.
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Simulation Study
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Data Generation

For longitudinal data {(Yj;, T;, X;),i =1,...,n;j = 1,..., K} with baseline
covariates only and observed time {t; =j: j = 1,..., K}, the continuous
response was generated by:

Yij = m(xl" tj) + TI(S(XH tJ)/2 +oj+ €ijj

with random intercept a; ~ N(0,02 = 1) and iid e; ~ N(0,02 = 1)
o Treatment: T; € {1, —1} by Bernoulli(0.5)
o Estimating ¢ in the training set with n =100, K =5
o Evaluation in the independent testing set with n, = 10000, K =5

@ Number of simulation replications N = 500
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Data Generation

Continuous Binary Continuous Binary
I
(11 Xi,l' ey Xi,5 rXi,6' lXi,10 'Xi,lll ey Xi,ZO ) Xi,21' ey Xi,30)

Not included in the outcome model

e 15 Continuous covariates: (X; 1, ..., Xis, Xi 11, -.-, Xi20) ~ N(0, Xx)

1 p P .. p*

p 1 ) 13

Sx = p2 p 1 12
p14 p13 p12 1

where p = 0 for independent case and p = 0.6 for correlated case.
e 15 Binary covariates: ()(;’5, ...,X,"lo,X,'721, ceey X,'730) ~ Bernoulli(0.5)
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Scenario Settings

Scenario 1: the validation of the new methods
@ The response is generated by

10

Yi=Bo+Brti+ Y BeXig

q=1

+Ti[o+yrt+ D veXiq | /2
q=1,28,10

+ a; + €
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Scenario Settings

Scenario 2: the robustness against mis-specification of main effect

@ Other data generation process is the same with scenario 1, except

10 10
Yi=Bo+Brti+ ) BeXiq+ Y cos(B4Xiq)
q=1

q=1

+Tilo+rrti+ D>, YeXig| /2
q=1,2.8,10

+ ai + €j

@ Main effect is mis-specified if using linear model
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Scenario Settings

Scenario 3: the robustness against mis-specification of propensity score

@ The treatment assignment is generated by the propensity score model:

2
Pr(Ti=11X) = 2 +exp(X1 + X + X7)

@ Propensity score is mis-specified if assuming randomized intervention
with #7,(X;) = 0.5

@ Compare the results in both linear and non-linear main effect cases
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Scenario Settings

For all scenarios, the parameters are:
o Interaction effects: (71, 72,78,710) = (8,—8,8,—8); y7 = 2,70 =2
o Small main effect: 8+ = 0.1 and

(Bo, ---, B10) = (0.3,0.5,0.4,0.6,—0.3,—0.6,0.3,0.1, —0.2,—0.1,0.2)
o Big main effect: fr = 0.4 and

(Bo, ..., Bro) = (1.2,2,1.6,2.4, —1.2,—2.4,1.2,0.4, —0.8, —0.4,0.8)
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Estimation Methods

Q
Q

Model 1: Full Mixed Effect Model with Lasso penalty and
exchangeable correlation structure.

Model 2: Huling's Method using square loss with fused lasso in
time-varying coefficients.

Model 3: New Method with Lasso penalty and exchangeable
correlation structure.
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Estimation Methods

¢ Model 1: Full Mixed Effect Model with Lasso penalty and
exchangeable correlation structure.

€) Model 2: Huling's Method using square loss with fused lasso in
time-varying coefficients.
© Model 3: New Method with Lasso penalty and exchangeable
correlation structure.
The following statistics are obtained for Model h
o ITE over time for i-th subject:

8n(Xi, ;) = (On(Xi, t1), .-, 6n(Xi, ti))’

o Time-average ITE for i-th subject: 0(X;) = % J-Kzl 5n(Xi, t7)
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Model Evaluation in Independent Testing Data

@ Accuracy of subgroup identification for model h:

nt

ACC, = :tz I{sign{gh(xi)} — sign{SO(X,-)}}

i=1

so(Xi) = % J-Kzl 0(Xi, tj): true time-average ITE of i-th subject.

Zhikuan Quan (UCD) ifyi in Bi isii June 13, 2023



Model Evaluation in Independent Testing Data

@ Accuracy of subgroup identification for model h:

nt

ACCy, = :tz I{sign{gh(xi)} = sign{go(xl-)}}

i=1
so(Xi) = % J-Kzl 0(Xi, tj): true time-average ITE of i-th subject.

@ Spearman’s rank correlation coefficient (denoted by SCCp, for model
h) between true time-average ITE and estimated time-average ITE.

o To compare the ability of recovering the rank of time-average ITE.
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Model Evaluation in Independent Testing Data

@ Accuracy of subgroup identification for model h:

nt

ACCy, = :tz I{sign{gh(xi)} = sign{go(xl-)}}

i=1
so(Xi) = % J-Kzl 0(Xi, tj): true time-average ITE of i-th subject.

@ Spearman’s rank correlation coefficient (denoted by SCCp, for model
h) between true time-average ITE and estimated time-average ITE.

o To compare the ability of recovering the rank of time-average ITE.

@ Average prediction error for model h:
1 ¢
APEL = Zl |10n(Xi, ti) — do(Xi, t;)|[2

where 60(X,-, t,') = ((5(X,', t]_), ...,5(X,', tK)), and ||||2 is Ly norm.
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Scenario 1: Estimation Performance

Correlated Covariates

Independent Covariates

o
©
L

Accuracy
o
™

o©
&y
L

e irf

ot

T T
Big Main Effects Small Main Effects

Main Effect

T T
Big Main Effects Small Main Effects

Model ' Full Regression ' Huling's Method ' New Method

@ New method can identify subgroups more precisely.

Zhikuan Quan (UCD)

June 13, 2023




Scenario 1: Estimation Performance

Correlated Covariates

Independent Covariates

-
o
1

©
©
L

©
&y
1

Rank Correlation
o
[o¢]

g
o
L

kil

o

T T
Big Main Effects Small Main Effects

Main Effect

T T
Big Main Effects Small Main Effects

Model ' Full Regression ' Huling's Method ' New Method

@ New method can recover the rank of individualized treatment effects

better.
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Scenario 1: Estimation Performance

§ Correlated Covariates Independent Covariates

m ; : :

= 20 1 : .

kel :

S 154 :

ko]

o

o 104

o I

S 97 ! ‘

q') T T T T

3: Big Main Effects Small Main Effects Big Main Effects Small Main Effects
Main Effect

Model . Full Regression . Huling's Method . New Method

@ New method can predict individualized treatment effects more
precisely.
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Scenario 2: Double Robustness to Mis-specification of Main Effect

Correlated Covariates Independent Covariates

"l ol

Big Main Effects Small Main Effects Big Main Effects Small Main Effects
Main Effect

o
©
A

Accuracy
o
(o]

o
3
1

Model . Full Regression . Huling's Method . New Method

o Full regression model requires correctly specified main effects, leading
to worse performance due to mis-specified main effects

o New method can identify subgroups precisely even if the main effect
is mis-specified.
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Scenario 2: Double Robustness to Mis-specification of Main Effect

Correlated Covariates Independent Covariates
c 1.04
9
(9}
=
o 0.81 !
O : :
: . i
o] f * .
& 0.6 T ' . T T T
Big Main Effects Small Main Effects Big Main Effects Small Main Effects
Main Effect

Model . Full Regression . Huling's Method ‘ New Method

@ The ability of recovering the rank is consistent with the accuracy of
subgroup identification.
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Scenario 2: Double Robustness to Mis-specification of Main Effect

Main Effect
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Model . Full Regression . Huling's Method . New Method

@ New method can predict individualized treatment effects precisely
even if the main effect is mis-specified.
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Scenario 3: Double Robustness to Mis-specification of Propensity Score

Linear Main Effect Non-Linear Main Effect
0.94
3 ‘
@ 0.84
3 . :
Q 0.7 : : 7
< : . . I | i
0.6 : L '
T T T T
Big Main Effects Small Main Effects Big Main Effects Small Main Effects
Main Effect

Model ES Full Regression Bl Huling's Method ES New Method

@ Huling's method requires correct propensity score model, leading to
worse performance.

@ New method can identify subgroups precisely if only the propensity
score is mis-specified.
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Scenario 3: Double Robustness to Mis-specification of Propensity Score

Linear Main Effect Non-Linear Main Effect
c
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@ The ability of recovering the rank is consistent with the accuracy of
ITR.
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Scenario 3: Double Robustness to Mis-specification of Propensity Score

5 Linear Main Effect Non-Linear Main Effect
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@ New method can predict individualized treatment effects precisely if
only the propensity score is mis-specified.
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Additional Simulation Results

@ Simulations for clustered data showed similar findings for the three
scenarios.

@ For non-linear ITE:

10
Yi=Bo+Brti+ Y BeXig
q=1

+ Ti | o+t + Z VaXiq +2X7g —4XP10 | /2
9=1.2,8,10

+ aj + €jj

€ Simulations show that the proposed method with B-spline based
additive model performs better.
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Real Data Analysis: MIA Study
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MIA Study

e This is a randomized study in rat by the UC Davis Conte Center for
studying effects of maternal immune activation on brain, behavior,
and other development in offspring.

@ Binary interventions at each mother

e MIA: inject 50 LPS in dam to induce MIA

e Saline: Control group
@ Sample size: 138 offspring from 21 dams (9 MIA vs. 12 Saline)
@ QOutcome: offspring social investigation time

o Covariates: 13 cytokines for each mother before intervention.
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MIA Study

Offspring Social Time

1001 e

MIA SALINE
Intervention

@ Average intervention effect for entire population is not significant.
@ How about individualized MIA effect?
o potential MIA-resilient group and MIA-susceptible group?
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MIA Study

@ Model Comparison by 100 random splits for 50% training set and
50% testing set at dam-level:
o Method 1: Traditional full linear mixed model
o Method 2: New method without main effect estimation
o Method 3: New method with efficiency augmentation

o All methods use Lasso penalty to select variables (tuning parameter
chosen by least MSE).
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MIA Study

@ Model Comparison by 100 random splits for 50% training set and
50% testing set at dam-level:

o Method 1: Traditional full linear mixed model
o Method 2: New method without main effect estimation
o Method 3: New method with efficiency augmentation

o All methods use Lasso penalty to select variables (tuning parameter
chosen by least MSE).
@ Model can be evaluated by Empirical Value Function under :

EVF := E[Y;|D(X;) = T;] — E[Y;|D(X;) # Ti]

where D(X;) := sign(8(X;)). The higher the EVF, the better the
model to differentiate the subgroups.
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MIA Study
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Methods

o New method with efficiency augmentation yields the largest value,
which means subgroups can be differentiate better based on the ITE
estimated by our method.
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MIA Study

@ Apply the proposed new method with augmentation, which selected 4
biomarkers for predicting individualized MIA effects.

@ Mothers with high level baseline (pre-intervention) of GM-CSF and
IL-1cx, low level of IFN-y and IL-5, are more susceptible to the effect
of maternal immune activation. (ie, MIA lowers social time compared

to control among their offspring)

Coefficients -0.45 0.29 -1.65
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Intervention

Identified Subgroups E MIA_Resilient @ MIA_Susceptible

- MIA-Resilient Group MIA-Susceptible Group

MIA 49 Offspring from 9 Dams 17 Offspring from 3 Dams
SALINE 42 Offspring from 5 Dams 30 Offspring from 4 Dams
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Conclusion and Discussion

@ New method can identify subgroups and predict individualized
treatment effects more precisely than existing methods.
@ New method shows doubly robust property with respect to main
effect and propensity score mis-specification.
o For randomized study, the proposed method always leads to consistent
ITE even main effects is mis-specified
o For observational study, the proposed method double the chances to
obtain consistent ITE

o Allow regularization approach to handle high-dimensional data

o Allow flexible modeling of ITE using flexible function space or
machine learning techniques
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Future Work

Extension to multiple treatments case

o e.g. incorporated with the angle-based method [Qi et al., 2020]
Extension to different types of outcome

e e.g. binary outcome(with different loss function)

Extension to involving post-MIA characteristics in identifying
subgroups
o e.g. following the idea of [Barbosa et al., 2020]
Application with flexible function space to predict complicated ITE
o e.g. more machine learning techniques (random forest, etc.) and
semi-parametric method as in [Liang et al., 2022]

Application to more MIA datasets and other real data examples
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Appendix: Continuous Outcome Model for Clustered Data

We can decompose the continuous outcome into:
Yi = m(X;) + Ti6(X;)/2 + €
@ Main Effect is characterized by
m(X;) = {E(Yi|Ti =1, X) + E(Y;|T; = -1, X;)} /2

where m(X;) = (m(X;), ..., m(X;))'
@ The individualized treatment effect (ITE) is represented by:

5(X;): =E (v - v )x;]

where 8(X;) = (6(X;), ..., 6(X;))’
o Random Error €; = (€1, .., €i;) with E(€;) = 0, and invertible Var(e;) = V;

June 13, 2023

Zhikuan Quan (UCD)



Appendix: Multi-leveled Data

Data: {(Y;, T, Xi):i=1,..,nmj=1,...ki;k=1,..,m}
o Outcome: Y; = (Y1, ..., Yik;)’ for i-th cluster
o Y= (Y1, Y,-jmj)’ for j-th subject in i-th cluster

o Yii(tx) := Yjj is the k-th observation for j-th subject in i-th cluster
at time t

Cluster-Level Yi

N TN TN
ject-level [ Y., | Y. oo Y.
Subject-Level | Y, L Yl] / \Ylki
N\ - 2 . o 4 N - e
TN N N / TN 2N
Time-level (Ya1 ) e Yiam, ) (Vi /‘ ‘\yi)'ml' ) \Yikil/ Xiki”‘k}:“
Time: ty tm, ty [ ty ti, o
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Appendix: Model 1 in Simulation Study

@ Model 1: Full Mixed Effect Model with Lasso penalty and
exchangeable correlation structure:

% 3 % [y,. —{XiB+ (T;)?;/2)’7}]/ 7
i=1 " i\

[¥: — (X + (Ti%i/2)7}]

P p
+A (Z |Bql + Z Ivql + 1871 + |’YT|)

g=1 g=1
where X; = (Xi1, ., Xix), Xij = (L, tj, X;)' and 8= (Bo, 87,81, Bp) ¥ = (10,97, 11, s )’

o 77.(X;) =05 in randomlzed trial

o ITE over time: 81(X;, t;) = (Xi14, ..., Xik¥)'

o Average ITE for i-th subject: 01(X;) = & ZK: )~(,-j'“y
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Appendix: Model 2 in Simulation Study

@ Model 2: Huling's Method using square loss with fused lasso in
time-varying coefficients [Huling et al., 2019]:

Yie — TiXiv(e)/2)>
(Fay, - Yk)) == argmin
@ " (Y- 77(K)) K Z Z 71, (Xi)
+/\122|7tq Ve 1q|+)\2ZZ|’)’tq|
qg=1 t=2 qg=1t=1

o X; = (1,X!) and vty = (Y(),0, V(1)1 > N2),p)
o ITE over time: §2(X;, t;) = (Xi%(1), ---» ",-:y(K))'
o Average ITE for i-th subject: §»(X;) = % Zt_ ,'y(t)
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Appendix: Model 3 in Simulation Study

@ Model 3: New Method with Lasso penalty and exchangeable
correlation structure:

Ly 1 7 v ’ e,
n 2 Fr(X) [1¥; = (X, 1)} = {((TiXi/2Y 7} V!
[{Y; — m(X;, t;)} — {(T,-)?,-/z)'y}}

+A (i: Ivql + |’YT|)

q=1

where X,- = (X,~1, ...,X,-K), X,'j = (1, tj,X,-)’, ¥ = ("yo,"yT,’yl, ...,’yp)’
o 7t1,(X;) = 0.5 in randomized trial
o m(X;, t;) is estimated by linear mixed model with all covariates and
time for efficiency augmentation.
o ITE over time: 83(X;, t,') = (X,'lﬁ’, . X,’Kﬁ’)l
o Average ITE for i-th subject: J3(X;) = % Eszl Xi%
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Appendix: Result of Clustered Data: S1
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Appendix: Result of Clustered Data: S2
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Appendix: Result of Clustered Data: S3
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Appendix: Simulation of Non-Linear case
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o Non-Linear case: fuon(Xj, tj) = Bo + Brtj + 2 _b_; B(Xi q)Bq where

B(.) is the B-spline based function in the additive model
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