
Summary of Model-based EM Algorithm and its Variants

1 Introduction

1.1 Background

In practice, missing values, corruptions, and latent variables are common data problems. The
missing part may cause the maximum likelihood estimate (MLE) computation very complex. The
expectation-maximization (EM) algorithm is an approach for performing MLE in the presence of
the above data problems. In such an algorithm, instead of performing an exact maximization, it
simply returns a parameter value that does not decrease the likelihood in each iteration. Before
the EM algorithm is introduced in its general form, abundant works had analyzed many EM-
type algorithms. In the subsequent studies, monotonically properties and convergence results are
established. Although the EM algorithm is widely used for decades, we still don’t know how a
suitable initialization converges to a useful estimate and mystery of mathematical and theoretical
guarantees.

1.2 Related work

Tons of studies work on the EM algorithm and explore its application. Because of the importance of
initialization in EM algorithm, some methods are compared, which are classification EM algorithm,
stochastic EM algorithm and shorts runs of EM. It finds that the short runs of EM strategy is
preferred because of simpleness, good performance in a lot of situations and less sensitivity to
noisy data [1]. The property of EM algorithm estimate is closely investigated, and the results show
that EM algorithm estimate does provide good asymptotic properties except for some situations
in which the population means are quite close to each other and larger differences in the variances
of the distributions occur [2]. For accelerating the EM algorithm, Yaming Yu (2012) shows that
a trivial modification in the M-step results in an algorithm that maintains a monotonic increase
in the log-likelihood, but can have an appreciably faster convergence rate [3]. In some cases, EM
algorithm may still have a slow convergence issue, and the Expectation Conjugate Gradient method
as an extension of EM algorithm is introduced for a faster approach [4]. Another method to solve
the slow convergence issue is Quasi-Newton EM, which has a good performance in non-Gaussian
noise simulation[5]. For the stochastic EM algorithm, Wolfgang Jank (2006) finds that an unlucky
step size in SEM can lead to very poor algorithmic performance, and he proposes a new method
for step size selection and uses EM likelihood-ascent property to monitor the progress [6]. The
EM algorithm can be applied to a wide class of semiparametric mixture models, and it behaves
well when applicate it to real data, showing that it is fast and easy to be implemented [7]. EM
algorithm has many applications in the real world. Weng, Xiao, and Xie (2011) showed that the
Stochastic approximation EM algorithm can be applied to Gaussian mixtures in a wireless sensor
network and can be energy-efficient [8]. In transmitter localization, EM algorithm can also show
some ability with high probability to determine direct position by replacing high dimensions with
one dimension, and it outperforms the common gradient-based methods [9].

1



1.3 The general topic of this research

In this paper, the researchers prove rigorous guarantees on the convergence performance of the
EM algorithm and gradient EM algorithm. They first analyze the population level and they apply
the results to the sample level. The researchers simulate the convergence rate with three models:
Gaussian mixture models, the mixture of regressions, and regression with missing covariates. These
examples showed the necessity of qualified initialization and the rate of convergence of the EM and
gradient EM algorithms, which confirms that various aspects of the theoretical predictions. Overall,
the goal of this paper is to develop some general tools for characterizing the suitably initialized
sample-based EM algorithm, and their relation to MLE.

2 Methodology

In this section, we introduce the standard EM algorithm and the gradient EM algorithm, and then
both are applied to three models to illustrate the efficiency and feasibility of the algorithms.

2.1 EM algorithm and Gradient EM algorithm

For a joint density function fθ∗ with latent variables z and observed variables x and y, we need
to obtain the MLE of θ∗ by maximum the log-likelihood. In other words, θ 7→ loggθ(y), where
gθ(y) =

∫
Z fθ(y, z)dz is the density function of the observed variable Y , is maximized.

For each θ ∈ Ω, define kθ(z|y) as the conditional density of z given y. By Jensen’s inequality, we
have the lower bound of log-likelihood at θ

′ ∈ Ω, where the equality holds when θ = θ
′
:

loggθ′ (y) ≥
∫
Z
kθ(z|y)logfθ′ (y, z)dz︸ ︷︷ ︸

Q(θ′ |θ)

−
∫
Z
kθ(z|y)logkθ(z|y)dz

Standard EM algorithm: Update θt → θt+1 by two steps

• E step: Compute the bound Q(·|θt) on the observed data.

• M step: Maximize the bound to update new parameter value θt+1 = argmaxθ′∈ΩQ(θ
′ |θt).

We denote the mapping M : Ω→ Ω by M(θ) := argmaxθ′]∈ΩQ(θ
′ |θ). In this case, θt+1 = M(θt).

Gradient EM algorithm: In this algorithm, the requirements of M-step are relaxed. We find a
θt+1 ∈ Ω such that Q(θt+1|θt) ≥ Q(θt|θt) instead of a optimum. Therefore, given a learning rate
α, it has

θt+1 = θt + α∇Q(θt|Q(θt))

We denote the mapping G : Ω→ Ω by G(θ) = θ + α∇Q(θ|θ). In this case, θt+1 = G(θt).
For sample-based versions of EM algorithm, we have: Qn(θ

′ |θ) = 1
n

∑n
i=1

(∫
Z kθ(z|y)logfθ′ (yi, z)dz

)
Therefore, Mn(θ) := argmaxθ′∈ΩQn(θ

′ |θ), Gn(θ) = θ + α∇Qn(θ|θ).

2.2 Illustrative examples

In this section, we analyze three models: Gaussian mixture model, regression mixture model and
linear regression model with missing covariates, both for EM algorithm and Gradient EM algorithm
of sample-based version.
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2.2.1 Gaussian Mixture models

By denoting: wθ(y) = e−
‖θ−y‖22

2σ2

[
e−
‖θ−y‖22

2σ2 + e−
‖θ+y‖22

2σ2

]−1

and wθ(x, y) =
exp

(
−(y−<x,θ>)2

2 σ2

)
exp

(
−(y−<x,θ>)2

2σ2

)
+exp

(
−(y+<x,θ>)2

2σ2

)
The probability density function of this model is fθ(y) = 1

2φ(y; θ∗, σ2Id) + 1
2φ(y;−θ∗, σ2Id), where

φ(·, µ,Σ) denotes the density a N (µ,Σ) and σ2 is known. The hidden variable Z ∈ {0, 1} indicates
that (Y |Z = 0) ∼ N (−θ∗, σ2Id), (Y |Z = 1) ∼ N (θ∗, σ2Id). The EM updates are shown in Table 1:

Target Qn(θ
′ |θ) − 1

2n

∑n
i=1

[
wθ(yi)‖yi − θ

′‖22 + (1− wθ(yi))‖yi + θ
′‖22
]

Standard EM Mn(θ) 2
n

∑n
i=1wθ(yi)yi −

1
n

∑n
i=1 yi

Gradient EM Gn(θ) θ + α
{

1
n

∑n
i=1(2wθ(yi)− 1)yi − θ

}
Table 1: EM Updates for Gaussian Mixture Models

2.2.2 Regression Mixture models

For (yi, xi) drawn from linear regression model yi = 〈xi, θ∗〉+ vi with probability 1
2 , and otherwise

from yi = 〈xi,−θ∗〉 + vi, the hidden variables {zi}ni=1 indicates that data is generated from the
former model when zi = 1 and otherwise when zi = 0. The EM updates are shown in Table 2:

Target Qn(θ
′ |θ) − 1

2n

∑n
i=1

(
wθ(xi, yi)(yi− < xi − θ

′
>)2 + (1− wθ(xi, yi))(yi+ < xi − θ

′
>)2

)
Standard EM Mn(θ)

(∑n
i=1 xix

>
i

)−1
[
∑n

i=1(2wθ(xi, yi)− 1)yixi]

Gradient EM Gn(θ) θ + 1
α

{
(2wθ(xi, yi)− 1)yixi − xix>i θ

}
Table 2: EM Updates for Regression Mixture Models

2.2.3 Linear Regression Model with Missing Covariates

For a given (x, y), define xobs as the observed portion of x, and θobs as the corresponding sub-vector
of θ. Considering the missing rate ρ, the EM updates are shown in Table 3:

Target Qn(θ
′ |θ) 1

2n

∑n
i=1 < θ

′
,Σθ(xobs,i, yi)θ

′
> + 1

n

∑n
i=1 yi < µθ(xobs,i, yi), θ

′
>

Standard EM Mn(θ) [
∑n

i=1 Σθ(xobs,i, yi)]
−1 [
∑n

i=1 yiµθ(xobs,i, yi)]

Gradient EM Gn(θ) θ + α
{

1
n

∑n
i=1[yiµθ(xobs,i, yi)− Σθ(xobs,i, yi)θ]

}
Table 3: EM Updates for Linear Regression Model with Missing Covariates

where µθ(xobs, y) :=

[
Uθzobs
xobs

]
, Σθ(xobs, y) :=

[
I Uθzobsx

>
obs

xobsz
>
obsU

>
θ xobsx

>
obs

]
, Uθ = 1

‖θmis‖22+σ2

[
−θmisθ>obs θmis

]
,

and zobs :=

[
xobs
y

]
.

3 Theoretical Results

In this part, we provide the statistical guarantees of model-based EM algorithm from both popula-
tion based and sample based analysis. By denoting θ∗ that maximizes the likelihood function, we
derive the sufficient conditions where the sample-based EM algorithm for three models can converge
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to an ε-ball around θ∗. Some basic concepts of convergence condition are shown in Table 4:

Concepts Definition

Smallest scalar: εunifG (n, δ) supθ∈B2(r;θ∗)||Gn(θ)−M(θ)||2 ≤ εunifG (n, δ)

Smallest scalar: εunifM (n, δ) supθ∈B2(r;θ∗)||Mn(θ)−M(θ)||2 ≤ εunifM (n, δ)

First-order Stability (FOS) ||∇Q(M(θ)|θ∗)−∇Q(M(θ)|θ)||2 ≤ γ||θ − θ∗||2
Gradient Stability (GS) ||∇Q(θ|θ∗)−∇Q(θ|θ)||2 ≤ γ||θ − θ∗||2

λ-strongly concave Q(θ1|θ∗)−Q(θ2|θ∗)− 〈∇Q(θ2|θ∗), θ1 − θ2〉 ≤ −λ
2 ||θ1 − θ2||22

µ-smooth Q(θ1|θ∗)−Q(θ2|θ∗)− 〈∇Q(θ2|θ∗), θ1 − θ2〉 ≥ −µ
2 ||θ1 − θ2||22

Table 4: Basic Concepts of Convergence Condition

For general EM algorithm, we summarize the conditions and results of convergence in Table 5. The
details of the theorem are shown in Appendix A:

Conditions Results Theorem

FOS(λ) and λ-strongly concave Population-level Standard EM Appendix A.1

Bound on εunifM and population concavity Sample-level Standard EM Appendix A.1

GS(γ) and λ-strongly concave, µ-smooth Population-level Gradient EM Appendix A.2

Bound on εunifG and population concavity Sample-level Gradient EM Appendix A.2

Table 5: Summary of General EM Convergence

We denote ||θ
∗||2
σ as the signal-to-noise ratio (SNR), which measures the difficulty of estimating.

In this case, we assume ||θ
∗||2
σ > η > 0 for a sufficient large constant. This condition is necessary

since it constrains the ML solution with lower variance and quick convergence. Under the assump-
tion of SNR, the following part provides conditions of convergence for the specific models.

3.1 Gaussian Mixture Models

In addition the assumptions in the general EM convergence and the assumption of SNR, we add the
conditions for each method in Table 6 to guarantee the convergence of Gaussian mixture models:

Method Conditions Result

Standard EM C1: r = ||θ∗||2
4 and κ(η) ≤ e−cη2 for c > 0 ||M(θ)− θ∗||2 ≤ γ

λ ||θ − θ
∗||2

Gradient EM C1: r = ||θ∗||2
4 and κ(η) ≤ e−cη2 for c > 0 ||G(θ)− θ∗||2 ≤

(
1− 2λ−2γ

µ+λ

)
||θ − θ∗||2

Sample-based n > c1d log(1/δ) and θ0 ∈ B2(r; θ∗) with C1 Bound with positive (c, c1, c2)

Table 6: Guarantee for Gaussian Mixture Models

For the sample-based EM update, the iterates have the bound with probability at least 1− δ:

||θt − θ∗||2 ≤ κt||θ0 − θ∗||2 +
c2

1− κ
||θ∗||2

√
d

n
(σ2 + ||θ∗||22) log(

1

δ
)

The standard EM bound provides a rough guideline for iteration time since the bound consists of
unknown θ∗ and contraction coefficient κ. It suggests that the iteration complexity should grow
logarithmically in the ratio n/d. In addition, it also suggests the statistical error ||θt−θ∗||2 decrease
geometrically and then level off at a plateau. On the other hand, the optimization error decreases
geometrically to numerical tolerance.
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3.2 Regression Mixture Models

Except for the assumptions of general EM algorithm and SNR, we add the conditions for each
method in Table 7 to guarantee the convergence of regression mixture models:

Method Conditions Result

Standard EM C2: r = ||θ∗||2
32 and κ(η) ≤ 1

2 ||M(θ)− θ∗||2 ≤ γ
λ ||θ − θ

∗||2
Gradient EM C2: r = ||θ∗||2

32 and κ(η) ≤ 1
2 ||G(θ)− θ∗||2 ≤

(
1− 2λ−2γ

µ+λ

)
||θ − θ∗||2

Sample-based n > c1d log(1/δ) and θ0 ∈ B2(r; θ∗) with C2 Bound with positive (c, c1, c2)

Table 7: Guarantee for Regression Mixture Models

For the sample-based EM update, the iterates have the bound with probability at least 1− δ:

||θt − θ∗||2 ≤ κt||θ0 − θ∗||2 + c2||θ∗||2

√
d

n
(σ2 + ||θ∗||22) log(

1

δ
)

In this case, the bound also provides guidance on the number of iterations to perform. It matches
the minimax rate for estimation of a d-dimensional regression vector. Besides that, the convergence
features are similar to the EM algorithm in Gaussian mixture models.

3.3 Linear Regression Model with Missing Covariates

Except for the assumptions of general EM algorithm, we assume the missing rate ρ < 1
1+2ξ(1+ξ) ,

where ξ = (ξ1 + ξ2)2 and the SNR satisfies ||θ
∗||2
σ ≤ ξ1 and ||θ − θ∗||2 ≤ r = ξ2σ.

Method Conditions Result

Standard EM C3: r = ξ2σ and κ(η) = ξ+ρ(1+2ξ(1+ξ))
1+ξ < 1 ||M(θ)− θ∗||2 ≤ γ

λ ||θ − θ
∗||2

Gradient EM C3: r = ξ2σ and κ(η) = ξ+ρ(1+2ξ(1+ξ))
1+ξ < 1 ||G(θ)− θ∗||2 ≤

(
1− 2λ−2γ

µ+λ

)
||θ − θ∗||2

Sample-based n > c1d log(1/δ) and θ0 ∈ B2(r; θ∗) with C3 Bound with positive (c, c1, c2)

Table 8: Guarantee for Linear Regression Model with Missing Covariates

In this case, we require upper bound for signal-to-noise ratio. Since the norm ||θ∗||2 increases,
the amount of missing information increases in proportion to the amount of observed information.
Intuitively, this condition is unavoidable in practice. For the sample-based EM update, the iterates
have the bound with probability at least 1− δ:

||θt − θ∗||2 ≤ κt||θ0 − θ∗||2 +
c2

1− κ

√
d

n
(σ2 + 1) log(

1

δ
)

Similar to previous models, the optimization error decays geometrically while the statistical error
decays geometrically before leveling off. In conclusion, the conditions are reasonable.

4 Experimental Details

4.1 Setup

For each model, we simulate 10 different problem examples of dimension d = 10, sample size
n = 1000, signal-to-noise ratio ||θ

∗||2
σ = 2 and missing probability ρ = 0.2 (only used for linear

regression model with missing covariates), and then log optimization error log(||θt − θn||2) and log
statistical error log(||θt − θ∗||2) are recorded across iteration count.
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4.2 Results

By setting learning rate α = 0.5 and initializing θ0 as the way mentioned in Theoretical Results,
the plots of the iteration count versus log optimization error and log statistical error for each model
simulations are shown in this part.

Figure 1: Log Optimization Error(Blue) and Log Statistical Error(Red)

For the simulation results of each model in Figure 1, we can see that the optimization error decreases
geometrically while the statistical error decays geometrically before leveling off in both plots, which
is consistent as we discussed in Theoretical Results.

Figure 2: EM, Mixture of Gaussians

For each SNR, we performed 10 independent trials of a Gaussian mixture model with dimension
d = 10 and sample size n = 1000. The Figure 2 shows that larger values of SNR lead to faster
convergence rates, which is consistent with the discussion of SNR in Theoretical Results.
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A Additional Proof Details

A.1 General Convergence of Standard EM Updates

Population-level Convergence: For some radius r > 0 and γ and λ that 0 ≤ γ < λ, suppose
that the function Q(·|θ∗) is λ-strongly concave and satisfy condition FOS(γ) over the ball B2(r; θ∗),
then the population EM operator M is contractive for all θ ∈ B2(r; θ∗) that:

||M(θ)− θ∗||2 ≤
γ

λ
||θ − θ∗||2

In this case, the population EM sequence {θt}∞t=0 is linearly convergent if θ0 ∈ B2(r; θ∗).
Sample-based Convergence: Suppose that the population EM operator M : Ω→ Ω is contrac-
tive with parameter κ ∈ (0, 1) on the ball B2(r; θ∗) with the initial vector θ0 ∈ B2(r; θ∗):

1. For large sample size n which satisfies εunifM (n, δ) ≤ (1− κ)r, we have the bound:

||θt − θ∗||2 ≤ κt||θ0 − θ∗||2 +
1

1− κ
εunifM (n, δ)

2. Considering sample splitting method with iteration T, we have:

||θt − θ∗||2 ≤ κt||θ0 − θ∗||2 +
1

1− κ
εM (

n

T
,
δ

T
)

In this case, the theorem shows the geometric convergence to the target parameter θ∗. In addition,
the bound also suggests a reasonable choice of the number of iteration T with fixed sample size.

A.2 General Convergence of Gradient EM Updates

It is similar to gradient ascent algorithm that intuitively if the function Q(·|θ) is close enough to
Q(·|θ∗) the EM operator might be converge to the target.
Population-level Convergence: For some radius r > 0 and 0 ≤ γ < λ ≤ µ, suppose that the
function Q(·|θ∗) is λ-strongly concave, µ-smooth and satisfy condition GS(γ) over the ball B2(r; θ∗),
then the population EM operator G is contractive for all θ ∈ B2(r; θ∗) that:

||G(θ)− θ∗||2 ≤
(

1− 2λ− 2γ

µ+ λ

)
||θ − θ∗||2

In this case, the population gradient EM sequence {θt}∞t=0 is convergent if θ0 ∈ B2(r; θ∗).
Sample-based Convergence:Suppose that the population gradient EM operator G : Ω → Ω is
contractive with parameter κ ∈ (0, 1) on the ball B2(r; θ∗) with the initial vector θ0 ∈ B2(r; θ∗):

1. For large sample size n which satisfies εunifG (n, δ) ≤ (1− κ)r, we have the bound:

||θt − θ∗||2 ≤ κt||θ0 − θ∗||2 +
1

1− κ
εunifG (n, δ)

2. Considering sample splitting method with iteration T, we have:

||θt − θ∗||2 ≤ κt||θ0 − θ∗||2 +
1

1− κ
εG(

n

T
,
δ

T
)

7



In this case, it is the same as the contractive conditions in standard EM updates.
Similar to the stochastic gradient ascent algorithm, with the same assumption of sample-based
convergence in gradient EM update, the stochastic gradient EM updates with step size αt =

3
2ξ(t+2) satisfies:

E[||θt − θ∗||22] ≤
9σ2

G

ξ2

1

t+ 2
+

(
2

t+ 2

) 3
2

||θ0 − θ∗||22

In this case, we need to assume that θ0 ∈ B2( r2 ; θ∗) and pick a suitable step size to achieve conver-
gence.
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